
Enabling Risk Management of Machine Learning Predictions for
FPGA Routability

Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven Wilton
The University of British Columbia
Vancouver, British Columbia, Canada

{agunter,mayabj,nikhilghanathe,stevew}@ece.ubc.ca

Abstract
Machine Learning (ML) models sometimes make inaccurate predic-
tions for the routability of field-programmable gate array (FPGA)
circuit designs. This risks time wasted attempting to route an un-
routable design or the premature termination of a routable design’s
compilation. While improving model accuracy is beneficial, we
explore a complementary approach to mitigate the risk of inaccu-
rate predictions by assessing the confidence of ML models. This
approach could allow individuals to customize their own trade-off
for the competing risks of wasted time and premature compilation
termination. In this paper, we introduce a novel mixture of experts
ML system for FPGA routability prediction and further quantify
the confidence calibration of this system to determine its suitability
as a risk management tool. We evaluate our prediction system for
the purpose of enabling user risk management in FPGA routability
prediction, comparing against a baseline inspired by prior work.
Our evaluation finds our approach to achieve almost 2× the preci-
sion in risk trade-off between time wasted on unroutable designs
and premature termination of routable designs.

CCS Concepts
• Hardware→ Reconfigurable logic and FPGAs; Physical design
(EDA); • Computing methodologies → Machine learning.

Keywords
ML, confidence, uncertainty, CAD, FPGA, routing, early exit, risk
ACM Reference Format:
Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven
Wilton. 2024. Enabling Risk Management of Machine Learning Predictions
for FPGA Routability. In 2024 ACM/IEEE International Symposium on Ma-
chine Learning for CAD (MLCAD ’24), September 9–11, 2024, Salt Lake City,
UT, USA.ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3670474.
3685969

1 Introduction
Recent years have seen significant work on machine learning (ML)
techniques for computer-aided design (CAD) ([1, 4, 7, 8, 10, 15,
19–21, 25, 27, 29, 30] among many others). In many cases, ML

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685969

ML routability model to predict
if routing will succeed

and confidence

Decide whether to continue
assisted by calibration model

Early exit
(give up)

Risk
Tolerance

FPGA
Routing Problem

continue routing

confidence

Figure 1: Overall ML-Assisted FPGA Routing Flow

models make accurate predictions which improve CAD results but
this accuracy is not always guaranteed. When a significant cost is
associated with an inaccurate prediction, it becomes pragmatic to
take a risk management approach by minimizing costs while still
maximizing the benefits of accurate predictions. To this effect, we
take interest in understanding how ML model confidence can be
leveraged in an ML-aided CAD system.

To explore this idea, we focus on the routing task for Field-
Programmable Gate Arrays (FPGAs). FPGAs contain fixed logic
segments joined by programmable routing switches arranged in a
complex topology. This makes the FPGA routing problem difficult
and time-consuming; for a large FPGA, the routing task can take
days and there is no guarantee of success. Our previous work pre-
sented an ML-based approach to predict whether a legal solution
will eventually be found [11]. Using such a prediction, users can
abort doomed attempts early (i.e. “early exit”), allowing them to
modify the design, buy a bigger FPGA, or simply try again with a
different random seed.

In this paper, we argue that predicting success/failure is not
always enough; it is also important to estimate the confidence of
the routability prediction. Knowing the confidence of a prediction
may allow a user to take their own risk tolerance into consideration
as they decide whether to abort a run. A user on a tight timeline
may prefer to be biased towards exiting early to avoid wasted
runtime, while a user with tight resource constraints may be content
spending more time to find an optimized solution on a small FPGA.

In this paper, we consider both the confidence estimation prob-
lem and how this confidence information can be used in FPGA
routing (see Figure 1). We make the following contributions:

(1) We present a mixture of experts ML system which predicts
design routability and reports its confidence that the prediction
is correct (top box in Figure 1). More precisely, our system
outputs the probability that routing will complete within a
specified maximum number of iterations.

(2) We present a method to use confidence information to auto-
matically make early exit decisions (bottom box in Figure 1).

https://doi.org/10.1145/3670474.3685969
https://doi.org/10.1145/3670474.3685969
https://doi.org/10.1145/3670474.3685969
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3670474.3685969&domain=pdf&date_stamp=2024-09-09

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven Wilton

Recognizing that different users have different risk toler-
ances, we provide a “knob” which allows the user to trade-
off runtime for average completion rate. A key challenge
is to convert a user’s request into a parameter that can be
used with confidence information to determine whether to
continue or early exit. Our method achieves this.

(3) We compare the achievable route time / completion rate curve
to a baseline inspired by our previous work [11] and show
that our approach can provide a better trade-off between
these two quantities.

Overall, we show that our technique for directly estimating confi-
dence information leads to better decisions during the FPGA routing
CAD flow. Although our exposition is focused on our specific prob-
lem domain, we expect that the use of confidence information has
broader applicability across many MLCAD prediction scenarios.

This paper is organized as follows. Background is in Section 2.
Our novel confidence estimator is in Section 3 and its accuracy
is evaluated in Section 4. Our approach for using confidence to
make better decisions is in Section 5. Section 6 concludes the paper.
Additional experimental details and artifacts are in the appendix.

2 Background
2.1 Related Work
Machine learning (ML) has been shown to improve solutions for
difficult CAD problems through techniques such as predictive mod-
elling, automation, and more recently conversational hardware
design [4]. They have been applied to various stages of CAD like
congestion estimation [1, 10, 19, 25] during routing, design space
exploration [15, 20, 27, 30] for HLS designs, placement [7, 8, 21, 29]
and so on. Since ML models in CAD typically perform predic-
tions/suggest actions [26] in an iterative CAD process, an over-
fit/underfit model will lead to poor quality of results [10]. For ex-
ample, [21] encounters overfitting in MLP for delay-modelling and
mitigates it through ensemble-learning using a random-forest al-
gorithm. Similarly, [10] demonstrates that a random forest of sim-
ple regressors are less prone to overfitting, even outperforming a
sophisticated MLP-regressor. Therefore, overfit/underfit leads to
poor performance, severely restricting usability of the model in
CAD. Under this scenario, model reliability can be improved if the
model predictions are accompanied with a well-calibrated confi-
dence value that aligns with its actual accuracy. Model/confidence
calibration is a well studied problem in ML [9, 12–14, 16, 28], which
helps align predicted probabilities with actual likelihood of cor-
rectness, thereby enhancing the reliability of model predictions.
For example, if a well-calibrated ML model confidently predicts
maximum routing congestion during routing, it might be used to
advise users to refrain from routing further, thereby saving valuable
time. In contrast, a low-confidence estimation may encourage the
user to proceed with routing. There have been some prior works
in CAD that employ bayesian techniques like gaussian process
that can naturally quantify uncertainty [3, 18, 32]. However, they
suffer from the curse of dimensionality and do not scale well, are
computationally-inefficient and are sensitive to variations in data
and kernel selection.

2.2 Machine Learning Model Calibration
When a ML model’s self-reported confidence values align with its
actual accuracy over many samples, that model is said to be well-
calibrated. Common metrics to measure the calibration quality are:

Expected calibration error (ECE) [12]: An easily interpreted
score which measures the difference between prediction confidence
and actual accuracy across different confidence intervals in the
range [0.0, 1.0]. Confidence values are binned into discrete intervals
and confidences are compared to accuracy within each bin:

𝐸𝐶𝐸 =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

· |𝑎𝑐𝑐𝐵𝑚 − 𝑐𝑜𝑛𝑓𝐵𝑚 | (1)

𝑎𝑐𝑐𝐵𝑚 =
1

|𝐵𝑚 |
∑︁

∀𝑖∈𝐵𝑚
[𝑦𝑖 = �̂�𝑖] 𝑐𝑜𝑛𝑓𝐵𝑚 =

1
|𝐵𝑚 |

∑︁
∀𝑖∈𝐵𝑚

𝑝𝑖

where𝑀 is the number of intervals, 1.0
𝑀

is the size (width) of each
interval, 𝑁 is total number of predictions across all intervals, 𝐵𝑚
is the 𝑚th bin spanning the interval (𝑚−1

𝑀
, 𝑚
𝑀
), and |𝐵𝑚 | is the

number of samples in 𝐵𝑚 . 𝑎𝑐𝑐𝐵𝑚 and 𝑐𝑜𝑛𝑓𝐵𝑚 are the accuracy and
confidence of𝑚th bin.𝑦𝑖 is the true label and𝑦𝑖 is the predicted label
with associated prediction confidence 𝑝𝑖 . A low ECE score is desir-
able as it indicates less disparity on average between confidence
and accuracy across all intervals.

Brier Score (BS) [5]: BS measures the mean-squared difference
between predicted probabilities and actual outcomes.

𝐵𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

(𝜋𝑖 − 𝑦𝑖)2 (2)

where 𝜋𝑖 is predicted probability of the positive class and 𝑦𝑖 is the
actual outcome (e.g., 0/1 in binary classification).

Negative log-likelihood (NLL): NLL measures how close pre-
dictions are to the ground truth. A lower NLL indicates that the
model assigns high confidence to correct outcomes.

𝑁𝐿𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 · 𝑙𝑜𝑔 (𝑝𝑖) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔 (1 − 𝑝𝑖)) (3)

3 Constructing a confidence estimator
FPGA routing is typically done using a negotiated-congestion algo-
rithm [22, 24]. Each iteration, congested resource costs are increased
to try resolve congestion while optimizing for timing. The algo-
rithm stops when either a legal solution has been found (success)
or a predetermined maximum number of iterations finish (failure).
Routing is time-consuming and state-of-the-art techniques do not
guarantee a legal routing solution, even if one exists. This motivates
early exit during routing, in which the routing process is terminated
when it is believed that a legal routing solution will not be found.

Our previous work employs a mixture of experts (MoE) system
composed of regressors to predict, during routing, how many more
iterations will be required to achieve a solution [11]. Routing is
exited early if the prediction exceeds a user’s specified maximum
iteration tolerance. In this paper, we instead directly predict the
probability (confidence) that routing will complete within the user’s
tolerance. This section describes our MoE architecture for this task.

Enabling Risk Management of Machine Learning Predictions for FPGA Routability MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Model
Selector

Prediction & Linear
Interpolation

User’s max Iteration
limit (𝐼𝑚𝑎𝑥)

𝑓𝑢 (.)𝑓𝑙 (.)

Mixture of Experts
{𝑓𝑖 (.)}20𝑖=1

Feature
vector (𝑥)

Probability of
routing success (𝑌)

Figure 2: Overview of the proposed approach.

3.1 Mixture of Experts Architecture
We seek to construct a predictor which receives two inputs:

(1) The maximum number of routing iterations allowed.
(2) A feature vector describing the state of routing at the end of

a routing iteration. We replicate the features in [11].
This predictor must output the probability that routing will com-
plete within the specified iteration limit. The iteration limit param-
eter (𝐼𝑚𝑎𝑥) enables users to define a “worst-case” routing scenario,
typically between 50 and 1000; [11] established that relatively few
designs are routable beyond this range. Iteration limits lower than
50may have been worth modelling, but we are focused on challeng-
ing routing scenarios which rarely resolve within 50 iterations and
thus we would have insufficient data for smaller iteration limits.

We implement a simple mixture of experts (MoE) system com-
posed of 20 binary classification models {𝑓𝑖 }20𝑖=1. Each model 𝑓𝑖 is
trained to make predictions for the routing problem at a unique de-
cision threshold 𝑍𝑖 = 𝑖 ∗50, 𝑖 ∈ [1..20]. If the required iteration limit
𝐼𝑚𝑎𝑥 ∈ [50..1000] is a multiple of 50 such that 𝐼𝑚𝑎𝑥/50 = 𝑖 then
𝑌 = 𝑓𝑖 (𝑥). Otherwise the closest matching “upper” model, 𝑓𝑢 with
𝑢 = 𝑐𝑒𝑖𝑙 (𝐼𝑚𝑎𝑥/50), and “lower” model, 𝑓𝑙 with 𝑙 = 𝑓 𝑙𝑜𝑜𝑟 (𝐼𝑚𝑎𝑥/50),
are found. Then linear interpolation is performed as:

𝑌 =
(𝑍𝑢 − 𝐼𝑚𝑎𝑥) ∗ 𝑓𝑙 (𝑥) + (𝐼𝑚𝑎𝑥 − 𝑍𝑙) ∗ 𝑓𝑢 (𝑥)

(𝑍𝑢 − 𝐼𝑚𝑎𝑥) + (𝐼𝑚𝑎𝑥 − 𝑍𝑙)
. (4)

where, ∗ denotes multiplication of scalars and 𝑌 is the probability
that the design will complete routing within 𝐼𝑚𝑎𝑥 iterations. For
any given inference, at most two models within the system are
queried. This system is visualized in Figure 2.

3.2 Model Selection
We evaluated several ML model types to be used in our ML confi-
dence estimation system for the twenty 𝑓𝑖 . We find decision tree-
based MLmodels to perform best, as is often the case in tabular data
analysis. Full results are found in Appendix C, but here we compare
gradient-boosted decision trees (GBDT) against multi-layer percep-
trons (MLP) as other model types yield inferior performance. As
captured in Table 1, GBDTs achieve both higher accuracy and higher
Matthew’s correlation coefficient (MCC) [6] than MLPs when both
have their hyperparameters tuned and they are evaluated on a
5-fold cross-validation of our training dataset. GBDTs also have

Table 1: gradient-boosted decision trees outperform neural
networks

Model Accuracy (↑) MCC (↑)
GBDT 86% 0.60
MLP 79% 0.30

the benefits of being quicker to train i.e., 15× faster than MLP on
average, have negligible inference time even without hardware
acceleration, and are white-box models with interpretable predic-
tions. Evaluation metrics, dataset, and hyperparameter details are
provided in Appendices A & B & D respectively. We also considered
a neural network for model selection in the MoE system but opted
out, as choosing 𝑓𝑙 and 𝑓𝑢 based on 𝐼𝑚𝑎𝑥 is straightforward.

4 System-level Evaluations
4.1 Setup
In this section, we evaluate the prediction quality and confidence
calibration of our tuned MoE classifier system on our final test
dataset (detailed in Appendix B and our artifacts from Appendix E).
We compare against the architecture from [11] which combines 4
binary classifiers and 4 regressors to predict the number of itera-
tions required to solve FPGA routing problems. Each regressor is
trained to make predictions for different iteration ranges and the
classifiers are used to select which regressor to query for a given
inference. We also compare against an enhanced version of [11]
which contains 10 classifiers and 10 regressors for the sake of parity
with our prediction system of 20 classifiers. This enhanced archi-
tecture partitions the prediction problem such that one regressor is
trained to make predictions for iteration range [1, 100] then another
for range [101,200], etc. The classifiers select which regressor to
query in the same manner as [11].

The prior work architectures make “expectation-based” predic-
tions where they predict the number of iterations remaining and
compare this against the routing iteration limit in order to deter-
mine the routability of a circuit. There is no associated estimation
for probability of success, they predict routability likelihood as ei-
ther 0% or 100%. It might be possible to estimate success probability
based on the difference between predicted iterations remaining and
the iteration limit, but this was not part of the original implemen-
tation. The crux of our investigations is to determine the utility of
estimating such probabilities, a full treatment of the various tech-
niques to accomplish this is beyond our scope. One possible way to
obtain confidence estimates for regressors is through gaussian pro-
cess regression. However, it is non-trivial, often requiring multiple
inference passes [9], which inflates routing time. In contrast, our
MoE classifier system is the most direct approach to estimating suc-
cess probabilities, as its binary classification trees’ raw prediction
confidences are already probabilities based on training data.

4.2 Calibration Comparison
Since our goal is to estimate the probability of success in routing,
not to enhance routing itself, having a well-calibrated prediction
system is crucial. We assess calibration by running inference on
the entire test set.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven Wilton

Table 2: Confidence Calibration Study

Prediction System ECE (↓) BS (↓) NLL (↓)

tr
ai
n Expectation-based (Prior work) 6.4% 0.065 2.23

Enhanced Expectation-based 5.4% 0.055 1.89
Confidence-based (Ours) 5% 0.03 0.12

te
st

Expectation-based (Prior work) 20.8% 0.208 7.18
Enhanced Expectation-based 20.9% 0.209 7.22
Confidence-based (Ours) 5.8% 0.128 0.39

The “Expectation-based” results in Table 2 correspond to the
architecture of our prior work. The “Confidence-based” results
correspond with our MoE classifier system from Section 3.1. The
“enhanced” version of prior work is slightly worse in all metrics
compared to the original, but the differences are insignificant. This
suggests that merely partitioning the problem space isn’t enough
to improve predictions. Our confidence-based MoE system outper-
forms both approaches. The expected calibration error of the prior
work on test data is 20.8%, compared with 5.8% from our confidence-
based system, showing that simply taking the decision of greater
likelihood based on model predictions leaves a high risk exposure.

Furthermore, understanding how calibration changes across use
cases is crucial. We assess this across various routing iteration
limits. Figure 3 shows the expected calibration error (ECE) of the
confidence-based system compared to the regressors across many
decision thresholds. The confidence-based system achieves signifi-
cantly lower ECE compared to prior work in all cases without any
overlapping, despite the expectation-based approach performing
strongly at low iteration limits.

Table 3 compares the prediction quality of the three systems in
terms of accuracy and Matthew’s correlation coefficient (MCC). As
the test data is imbalanced with respect to the two classes (27%
routable to 73% unroutable), the MCC is important since it rebal-
ances the importance of the classes. Although the differences are
small, our confidence-based MoE has slightly higher prediction
quality but this is not a major finding. The key takeaway is that the
differences between the systems in Table 2 and the results to follow

0%

5%

10%

15%

20%

25%

0 100 200 300 400 500 600 700 800 900 1000

E
x

p
e

ct
e

d
 C

a
li

b
ra

�

o
n

 E
rr

o
r

User Rou�ng Itera�on Limit

Expecta�on-based (Prior work) Enhanced Expecta�on-based Con�dence-based (Ours)

Figure 3: Our confidence-based approach to predicting
routability likelihood achieves much lower expected cali-
bration error at all routing iteration limits compared with
expectation-based approaches. Y axis plots average value of
ECE for the test data.

in Section 5 are not simply due to prediction quality discrepancies.
Rather, the prediction qualities are roughly equal and other aspects
of the systems are important for their usage as risk management
tools by estimating routability probabilities.

Table 3: Prediction Quality Summary

Prediction System Accuracy (↑) MCC (↑)
Expectation-based (Prior work) 79.2% 0.599
Enhanced Expectation-based 79.1% 0.602
Confidence-based (Ours) 80.4% 0.605

4.3 Ablation Study
We chose to use 20 models in our MoE classifier system because this
was the most we could reasonably use with our available resources,
as each model requires a slightly different training data set to be
curated and they are trained separately. We study the performance
of this system with models removed in an ablation study.

Figure 4 depicts the variation of system performance and calibra-
tion as models are removed. In each stage of ablation, models are
removed as uniformly as possible. For example, the data point cor-
responding with 20 models has models for decision thresholds {50,
100, 150, .., 1000}. Each data point represents an average across all
routing iterations from all circuit designs in our evaluation set (see
appendix) evaluated at user iteration limits in the range [400, 600].
We restrict evaluation to this range to make the experiments com-
putationally feasible. The results show that system performance is
unaffected as long as there are more than 2 models in the system.
The data point for 2 models evaluates a systemwhich is only trained
for decision thresholds at 50 and 950. Our system of 20 classifiers
may be unnecessarily large but this is not harmful to our results.

5 FPGA Routing Risk Management Evaluations
5.1 Setup
Routing Replay: While the evaluation described in Section 4 is
diagnostically useful, the most important metrics can only be cap-
tured from routing. Now we evaluate the scenario where a routing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

02468101214161820

A
v

e
ra

g
e

 M
e

tr
ic

Number of Models

Accuracy MCC ECE Brier score NLL

Figure 4: System performance is unaffected as long as at
least 3 models are part of MoE. Y-axis is average value of
accuracy, MCC, ECE, Brier score and NLL across all test data.
For Accuracy and MCC higher is better and for ECE, BS and
NLL lower is better.

Enabling Risk Management of Machine Learning Predictions for FPGA Routability MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

0%

20%

40%

60%

80%

100%

0

80

160

240

320

400

480

560

640

720

800

0 80 160 240 320 400 480 560 640 720 800

A
v
g

.
R

o
u

te
 C

o
m

p
le

ti
o
n

 R
a
te

A
v
g

.
To

ta
l
R

o
u

te
 T

im
e
 (

H
rs

)

User Time Budget (Hrs)

Reference (Time)

Conf. (Time)

Expt. (Time)

Conf. (Route)

Expt. (Route)

Figure 5: Confidence-based routing early exit is better for risk management than a regression-based approach.

attempt early exits whenever a ML system predicts the design is
unroutable. Such routing experiments are typically very slow, but in
our prior work [11], we introduce routing simulation to accelerate
early exit experimentation. We adopt this idea by recording routing
results between iterations during data collection and “replaying”
them with various early exit conditions. In this process, routing
proceeds almost exactly as it normally would until an early exit
trigger is activated to terminate routing.

During routing replay, we collect two metrics: (1) total time spent
in routing – the sum of time spent on completed designs, early
exited designs, and unroutable designs, and (2) the route completion
rate – the fraction of routable designs which are not exited early.
In practice, a trade-off emerges; being quick to early exit generally
results in lower routing time but also reduces the route completion
rate (and vice versa). The risk management we pursue is about
enabling the possibility to control this trade-off by intelligently
tuning the early exit trigger to best suit individual users.
User-tuned Early Exit: We investigate two types of early exit
triggers: (1) Minimum prediction confidence from ourMoE classifier
system, and (2) A number of consecutive unroutable predictions
from the expectation-based prediction system.Wewish to be able to
control the trade-off of routing time versus routing completion with
an appropriately selected trigger value to accommodate different
users’ risk sensitivities. However, there is no intrinsic one-to-one
mapping from these trigger values to the resultant routing time
and completion rate. Considering the prediction confidence trigger
as an example, the route completion rate depends on both the
confidence trigger and theMLmodels generating the corresponding
confidence values. A “pessimistic” ML model that never predicts
above 70% routability likelihood would achieve a route completion
rate of 0% if the early exit confidence threshold were set to 75%;
an “optimistic” ML model would achieve 100% route completion
for the same threshold if it never predicted below 80% routability
likelihood. Due to this lack of intrinsic mapping, the relationships
between the early exit triggers and the two outcome metrics must
be empirically characterized.
Evaluation Scenario: We target a theoretical scenario where a
highly experienced user has some fixed amount of time that they are
willing to spend on routing a suite of designs and they also roughly

know (1) their designs rarely complete routing after some number
of routing iterations, i.e. a max iteration limit (𝐼𝑚𝑎𝑥) for stopping
the router, and (2) how many of the designs could reasonably be
completed with the time that they have. This user then inputs their
required route completion rate and iteration limit into our risk
management tools, which set the routing early exit trigger to a
value that will most precisely achieve the user’s requested route
completion rate (and therefore respect the user’s time budget).

5.2 Risk Management Characterization
Characterization Step: We split our training dataset into training
and characterization subsets. For each early exit trigger type, rel-
evant models are trained on design data from the training subset.
Characterization is performed by “replaying” routing on the char-
acterization subset while sweeping the routing iteration limit in {50,
75, .., 1000} and user-requested route completion rate in {5%, 10%,
95%}. The resultant actual route completion rate across all of the
designs is then recorded. We create a lookup table where the keys
are a desired route iteration limit and route completion rate and
the values are the minimum early exit trigger value that will result
in exceeding the desired completion rate. For our MoE confidence
estimator, the values are minimum confidences; for the expectation-
based predictor, the values are theminimum consecutive unroutable
predictions needed to trigger early exit.
Evaluation Step: We evaluate each relevant prediction system and
its associated characterization lookup table as risk management
tools by performing routing replay with them on our test set designs
(detailed in Appendix B and our artifacts from Appendix E). This is
done for the same range of iteration limits and completion rates as
used in the characterization step.

In Figure 5 we present results from a perspective considering the
user’s original time budget. This figure compares the results from
evaluating the two early exit trigger types (prediction confidence
and consecutive unroutable predictions) with their corresponding
prediction systems, confidence-based in green and expectation-
based in red. Each data point represents an average of results across
the full range of tested routing iteration limits. Points below the
black reference line process all designs for routing in less time than
the user’s budget while those above exceed the budget. An ideal

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven Wilton

Table 4: Our confidence-based risk management performs
best

Risk Root Mean Squared Error (↓)
Manager Time Control Routing Control

Enhanced Expectation-based 273 hours 38%
Confidence-based (Ours) 143 hours 22%

risk management tool would adhere tightly to the black reference
line. The confidence-based approach generally uses less time than
budgeted while the expectation-based approach generally exceeds
the budget. Correspondingly, the expectation-based approach also
has higher route completion rates but this is actually not ideal as it
would require far more time than the user has available to achieve
this. Overall, the confidence-based approach does a better job as a
risk management tool because it is more precisely able to control
the trade-off between routing time and route completion.

Table 4 summarizes the results from Figure 5. The “Time Control”
column represents the same time-centric perspective taken in Fig-
ure 5. The corresponding values are the rootmean squared errors for
the two risk management approaches, where the “true” values are
the user’s time budget. The errors are absolute differences between
the time budget and the actual routing time, i.e. error is unchanged
whether actual routing time is above or below the time budget, as
either case represents an inability to precisely manage risk. The
“Routing Control” column corresponds with the error associated
with the route completion rate values input to the lookup tables
for the risk management tools. Overall, our confidence-based
approach is able to manage the risk trade-off in routing time
and route completion rate almost twice as precisely as the
expectation-based approach from prior work.

5.3 Future Improvement: Calibration Across
Iterations

Here we investigate the potential source of error in our results from
Section 5. Figure 6 shows a breakdown of the expected calibration
error (ECE) of the confidence-based and expectation-based predic-
tion systems as routing progresses for train and test data sets. Each
data point averages across all predictions for an iteration across
runs. While calibration is good in early iterations, it degrades later
on. It is very likely that this was a significant cause of error for
both prediction systems in managing risk. However, the training set
calibration actually improves in the later stages of routing, which
is what we expect as the models have better information to make
predictions at these points. This suggests at least one of two possi-
bilities: either the models are somehow overfit to the training data
for late-stage routing but not early-stage routing, or the training
data and testing data have divergent characteristics in late-stage
routing. We have already tuned the hyperparameters of our models
to avoid overfitting, so we investigate the latter possibility and
results are shown in Figure 7.

Figure 7 shows the ECE results when we change the train-test
split. The original train-test split used in our evaluations is ex-
tremely challenging, featuring relatively small designs in the train-
ing set and relatively large, industrial-complexity designs in the
test set. In Figure 7, the train-test split is changed so that designs

Figure 6: Expected Calibration Error (ECE) with original
train/test split

Figure 7: Expected Calibration Error (ECE) with modified
train/test split

are randomly assigned between train and test rather than splitting
by design size. In this case, the test set ECE is more aligned with the
training set, suggesting that further work needs to consider more
high-quality circuit designs in order to improve model calibration.

6 Conclusion
In this paper, we explored a novel problem in the form of risk man-
agement for ML model predictions as applied to FPGA routability
for early exit. We have introduced an approach for enabling this risk
management by leveraging the self-reported confidence values of
tree-based ML classifiers. We compare this approach in a risk man-
agement evaluation against an alternative approach based on prior
work. We find that our confidence-based approach is roughly twice
as precise in managing the trade-off between time spent in routing
and the route completion rate across a suite of realistic benchmark
designs. Although further exploration of advanced techniques is
needed to make this type of risk management framework practical,
our findings focus on the underlying prediction mechanisms which
will be the core driver of such a framework in the future.

Enabling Risk Management of Machine Learning Predictions for FPGA Routability MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

References
[1] Mohamed Baker Alawieh, Wuxi Li, Yibo Lin, Love Singhal, Mahesh A. Iyer, and

David Z. Pan. 2020. High-Definition Routing Congestion Prediction for Large-
Scale FPGAs. In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). 26–31. https://doi.org/10.1109/ASP-DAC47756.2020.9045178

[2] Aman Arora, Andrew Boutros, Daniel Rauch, Aishwarya Rajen, Aatman Borda,
Seyed Alireza Damghani, Samidh Mehta, Sangram Kate, Pragnesh Patel, Ken-
neth B. Kent, Vaughn Betz, and Lizy K. John. 2021. Koios: A Deep Learning
Benchmark Suite for FPGA Architecture and CAD Research. In 2021 31st Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 355–362.
https://doi.org/10.1109/FPL53798.2021.00068

[3] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin DF Wong. 2021.
BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration
framework. In 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1–9.

[4] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. 2023.
Chip-chat: Challenges and opportunities in conversational hardware design. In
2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD). IEEE, 1–6.

[5] Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability.
Monthly weather review 78, 1 (1950), 1–3.

[6] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21 (01 2020). https://doi.org/10.1186/s12864-019-
6413-7

[7] Mohamed A. Elgamma, Kevin E. Murray, and Vaughn Betz. 2020. Learn to
Place: FPGA Placement Using Reinforcement Learning and Directed Moves. In
2020 International Conference on Field-Programmable Technology (ICFPT). 85–93.
https://doi.org/10.1109/ICFPT51103.2020.00021

[8] Mohamed A. Elgammal, Kevin E. Murray, and Vaughn Betz. 2022. RLPlace: Using
Reinforcement Learning and Smart Perturbations to Optimize FPGA Placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
41, 8 (2022), 2532–2545. https://doi.org/10.1109/TCAD.2021.3109863

[9] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of The 33rd
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR,
New York, New York, USA, 1050–1059. https://proceedings.mlr.press/v48/gal16.
html

[10] Pingakshya Goswami and Dinesh Bhatia. 2021. Congestion prediction in fpga
using regression based learning methods. Electronics 10, 16 (2021), 1995.

[11] Andrew David Gunter and Steven J.E. Wilton. 2023. A Machine Learning Ap-
proach for Predicting the Difficulty of FPGA Routing Problems. In 2023 IEEE
31st Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 63–74. https://doi.org/10.1109/FCCM57271.2023.00016

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. CoRR abs/1706.04599 (2017). arXiv:1706.04599
http://arxiv.org/abs/1706.04599

[13] MartonHavasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek,
Balaji Lakshminarayanan, Andrew M. Dai, and Dustin Tran. 2021. Training
independent subnetworks for robust prediction. arXiv:2010.06610 [cs.LG]

[14] José Miguel Hernández-Lobato and Ryan P. Adams. 2015. Probabilis-
tic Backpropagation for Scalable Learning of Bayesian Neural Networks.
arXiv:1502.05336 [stat.ML]

[15] Jihye Kwon and Luca P. Carloni. 2020. Transfer Learning for Design-Space
Exploration with High-Level Synthesis. In 2020 ACM/IEEE 2nd Workshop on
Machine Learning for CAD (MLCAD). 163–168. https://doi.org/10.1145/3380446.
3430636

[16] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red
Hook, NY, USA, 6405–6416.

[17] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu,
Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed,

Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. 2014. VTR
7.0: Next Generation Architecture and CAD System for FPGAs. ACM Trans.
Reconfigurable Technol. Syst. 7, 2, Article 6 (jul 2014), 30 pages. https://doi.org/
10.1145/2617593

[18] Yuzhe Ma, Ziyang Yu, and Bei Yu. 2019. CAD Tool Design Space Exploration via
Bayesian Optimization. In 2019 ACM/IEEE 1st Workshop on Machine Learning for
CAD (MLCAD). 1–6. https://doi.org/10.1109/MLCAD48534.2019.9142051

[19] Dani Maarouf, Abeer Alhyari, Ziad Abuowaimer, Timothy Martin, Andrew
Gunter, Gary Grewal, Shawki Areibi, and Anthony Vannelli. 2018. Machine-
Learning Based Congestion Estimation for Modern FPGAs. In 2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). 427–4277.
https://doi.org/10.1109/FPL.2018.00079

[20] Anushree Mahapatra and Benjamin Carrion Schafer. 2014. Machine-learning
based simulated annealer method for high level synthesis design space explo-
ration. In Proceedings of the 2014 Electronic System Level Synthesis Conference
(ESLsyn). 1–6. https://doi.org/10.1109/ESLsyn.2014.6850383

[21] T. Martin, G. Grewal, and S. Areibi. 2021. A Machine Learning Approach to
Predict Timing Delays During FPGA Placement. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 124–127. https:
//doi.org/10.1109/IPDPSW52791.2021.00026

[22] Larry McMurchie and Carl Ebeling. 1995. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In Proceedings of the 1995 ACM Third In-
ternational Symposium on Field-Programmable Gate Arrays (Monterey, California,
USA) (FPGA ’95). Association for Computing Machinery, New York, NY, USA,
111–117. https://doi.org/10.1145/201310.201328

[23] Kevin Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2015. Timing-
Driven Titan: Enabling Large Benchmarks and Exploring the Gap between Aca-
demic and Commercial CAD. ACM Trans. Reconfigurable Technol. Syst. 8, 2,
Article 10 (mar 2015), 18 pages. https://doi.org/10.1145/2629579

[24] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy,
Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P.
Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent, and
Vaughn Betz. 2020. VTR 8: High-Performance CAD and Customizable FPGA
Architecture Modelling. ACM Trans. Reconfigurable Technol. Syst. 13, 2, Article 9
(may 2020), 55 pages. https://doi.org/10.1145/3388617

[25] Chak-Wa Pui, Gengjie Chen, Yuzhe Ma, Evangeline F. Y. Young, and Bei Yu. 2017.
Clock-aware ultrascale FPGA placement with machine learning routability pre-
diction: (Invited paper). In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 929–936. https://doi.org/10.1109/ICCAD.2017.8203880

[26] Martin Rapp, HussamAmrouch, Yibo Lin, Bei Yu, David Z. Pan, MarilynWolf, and
Jörg Henkel. 2022. MLCAD: A Survey of Research in Machine Learning for CAD
Keynote Paper. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 41, 10 (2022), 3162–3181. https://doi.org/10.1109/TCAD.2021.3124762

[27] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2021. AutoDSE:
Enabling Software Programmers Design Efficient FPGA Accelerators. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New
York, NY, USA, 147. https://doi.org/10.1145/3431920.3439464

[28] Mattias Teye, Hossein Azizpour, and Kevin Smith. 2018. Bayesian Uncertainty
Estimation for Batch Normalized Deep Networks. arXiv:1802.06455 [stat.ML]

[29] Huimin Wang, Xingyu Tong, Chenyue Ma, Runming Shi, Jianli Chen, Kun Wang,
Jun Yu, and Yao-Wen Chang. 2022. Cnn-inspired analytical global placement
for large-scale heterogeneous fpgas. In Proceedings of the 59th ACM/IEEE Design
Automation Conference. 637–642.

[30] Zi Wang and Benjamin Carrion Schafer. 2020. Machine Leaming to Set Meta-
Heuristic Specific Parameters for High-Level Synthesis Design Space Exploration.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.
org/10.1109/DAC18072.2020.9218674

[31] Saeyang Yang. 1991. Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0.

[32] Shuhan Zhang, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. 2022. Lin-
EasyBO: Scalable Bayesian Optimization Approach for Analog Circuit Synthesis
via One-Dimensional Subspaces. In 2022 ACM/IEEE 4th Workshop on Machine
Learning for CAD (MLCAD). 27–34. https://doi.org/10.1109/MLCAD55463.2022.
9900105

https://doi.org/10.1109/ASP-DAC47756.2020.9045178
https://doi.org/10.1109/FPL53798.2021.00068
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1109/ICFPT51103.2020.00021
https://doi.org/10.1109/TCAD.2021.3109863
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1109/FCCM57271.2023.00016
https://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2010.06610
https://arxiv.org/abs/1502.05336
https://doi.org/10.1145/3380446.3430636
https://doi.org/10.1145/3380446.3430636
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1109/MLCAD48534.2019.9142051
https://doi.org/10.1109/FPL.2018.00079
https://doi.org/10.1109/ESLsyn.2014.6850383
https://doi.org/10.1109/IPDPSW52791.2021.00026
https://doi.org/10.1109/IPDPSW52791.2021.00026
https://doi.org/10.1145/201310.201328
https://doi.org/10.1145/2629579
https://doi.org/10.1145/3388617
https://doi.org/10.1109/ICCAD.2017.8203880
https://doi.org/10.1109/TCAD.2021.3124762
https://doi.org/10.1145/3431920.3439464
https://arxiv.org/abs/1802.06455
https://doi.org/10.1109/DAC18072.2020.9218674
https://doi.org/10.1109/DAC18072.2020.9218674
https://doi.org/10.1109/MLCAD55463.2022.9900105
https://doi.org/10.1109/MLCAD55463.2022.9900105

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Andrew David Gunter, Maya Thomas, Nikhil Pratap Ghanathe, Steven Wilton

A Machine Learning Metrics
In our system-level evaluations, we evaluate model performance us-
ing Accuracy and Matthews Correlation Coefficient (MCC), which
are given by,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 +𝑇𝑃

𝑇𝑁 +𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

𝑀𝐶𝐶 =
𝑇𝑃 ∗𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)
where, 𝑇𝑁 denotes true negatives, 𝐹𝑁 denotes false negatives, 𝑇𝑃
denotes true positives, and 𝐹𝑃 denotes false positives.

Furthermore, since the datasets we use contain more negative
(unroutable) samples than positive (routable), we use the MCC as
our primary metric as it is more robust to class imbalance. Unlike
accuracy, MCC takes the distribution of error between classes into
consideration, which helps provide a more realistic picture of the
classifier’s performance. Accuracy is still provided in some cases
for context, but it is possible to score well on accuracy on our
imbalanced datasets while only ever predicting negative. The range
for accuracy is [0%, 100%], and MCC is in the range [−1, +1]. For
both, higher values are better. A MCC score of +1 is a perfect binary
classifier, -1 is a perfect binary classifier with inverted predictions,
and a score of 0 is the expected result from a random classifier. In
addition, we measure the calibration quality of the model using the
calibration metrics described in Section 2.

B Data Gathering
We extract our data by replicating [11] through real FPGA routing
with the FPGA CAD tools in the open-source Verilog-to-Routing
(VTR) project [24]. Training data are extracted from routing the
digital circuit designs found in the MCNC, VTR, and “Titan-other”
(from VTR) benchmark suites [17, 31]. Testing data are extracted
from the Koios and Titan23 benchmark suites [2, 23].

As we pursue a supervised learning approach and FPGA routing
is iterative, we extract one data sample from each iteration for a
given routing problem. Each sample consists of a feature vector
paired with a regression label. The regression label for an iteration
is the number of iterations remaining until the routing problem will
be successfully solved. These labels are technically computed at the
end of a routing problem then assigned to corresponding iterations’
feature vectors. The features are a replication of the 79 features
described in [11] using the information available, encompassing
features such as resource overuse/underuse, FPGA architectural
details, wirelength utilization and fanout, among others. While our
regression models are trained to predict routing iterations remain-
ing, our classification models are trained to predict whether the
total number of iterations (𝑌) required to solve a routing problem is
greater than some threshold (𝑍𝑖), i.e. if 𝑌 > 𝑍𝑖 . The corresponding
boolean classification labels for a given Z are thus easily derived
from the regression labels. We stop unsolved routing problems after
1000 iterations have completed.

C Detailed Model Selection
We performed experiments with simple classical ML models to
justify our choice of gradient boosted decision trees for our main
experiments. The results in this section come from training the
models on our train set and testing on our test set. These results
were not used in making this decision, as that would mean to use
test set information in decision-making which is a potential form
of data leakage. However, we present these results here to show the
superiority of gradient-boosted decision trees (GBDT) compared
to other classical ML model types. Table 5 reports the average
performance metrics on the test set for the ML models we evaluate.
For brevity, we do not include results of non-test set data. Overall,
GBDT model outperforms all other model types as judged by the
MCC values, which supports its use in our main experiments.

Table 5: Comparison of various classical model types. Results
averaged across all decision thresholds.

Model Accuracy (↑) MCC (↑)
Gradient-boosted Decision Tree

classifier with depth=6 78% 0.56
K-Nearest Neighbours model

(with 10 neighbors) 71% 0.38
Gaussian Naive Bayes
with priors=(0.5, 0.5) 63% 0.37

Support Vector
Machine-based model 56% 0.02

D Hyperparameter Tuning
All models evaluated are trained with the default scikit-learn config-
urations. The MLP models are trained with early-stopping enabled.
For the expectation-based systems, we replicated the setup of [11]
and find that the default scikit-learn 1.0.1 model hyperparameters
are best for that architecture. For our twenty classification ensemble
models, we tune the max depth of individual trees and the num-
ber of trees in the ensemble. This tuning is done to maximize the
Matthews correlation coefficient (MCC) of the models on a 5-fold
cross validation of train data, as suggested by [6] for imbalanced
data like ours.We also aim tomaximize the range of their confidence
estimations. The number of unique confidence values a classifica-
tion tree can yield (per class) is bounded by the number of its leaf
nodes and therefore depth, i.e. #𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑠 ≤ 𝑙𝑒𝑎𝑣𝑒𝑠 ≤ 2𝑑𝑒𝑝𝑡ℎ . As
we desire to use the decision trees’ confidences directly for decision-
making, it is ideal to maximize the tree depths without incurring
training overfit. We initially found a depth of 6 or 7 to be suitable
then tested these values in a 5-fold cross-validation of our training
data while varying the number of trees simultaneously, finding 30
trees with depth 6 to be optimal. Table 6 provides an apt summary
for classification hyperparameter tuning

Enabling Risk Management of Machine Learning Predictions for FPGA Routability MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Table 6: Classifier Hyperparameter Tuning. Results averaged
across all decision thresholds.

Max depth
Number of

Trees

Avg Accuracy
across
decision

thresholds
(Test) (↑)

Avg MCC
across
decision

thresholds
(Test) (↑)

6 5 81.53% 0.3133
6 10 85.76% 0.5567
6 20 85.77% 0.5847
6 30 85.74% 0.5919
6 50 85.47% 0.5917
6 70 85.24% 0.5887
7 5 82.27% 0.3629
7 10 85.39% 0.5498
7 20 85.63% 0.5838
7 30 85.58% 0.5896
7 50 85.38% 0.5896
7 70 85.06% 0.5841

Tuning of Multi-layer Perceptron
For our neural network model, we used a multilayer perceptron
(MLP) architecture with 2 hidden layers of size 𝑛 and 𝑛/2 neurons
respectively. We evaluated the MCC and the calibration metrics for
all 𝑛 ∈ {100, 200, ..., 800} as reported in Table 7. Since our dataset
is imbalanced, the MLP runs the risk of becoming biased towards
the majority class resulting in misrepsentation of the classifier’s
performance. Hence, we consider both the MCC and the calibra-
tion metrics to determine the best 𝑛. We tested these values in a
5-fold cross validation of our training data. As shown in Table 7,
we find that 𝑛 = 400 configuration provides a balanced perfor-
mance in terms of MCC and calibration quality compared to other
configurations. Therefore, we set 𝑛 = 400 in our evaluations.

Table 7: MLP Hyperparameter Tuning. Results averaged
across all decision thresholds.

Hidden
Layer1 (𝑛)

Avg MCC
(Test) (↑)

Avg ECE
(Test) (↓)

Avg Brier score
(Test) (↓)

Avg NLL
(Test) (↓)

100 0.29 0.07 0.16 0.77
200 0.23 0.06 0.17 0.71
300 0.21 0.08 0.18 1.14
400 0.3 0.07 0.17 0.97
500 0.31 0.07 0.16 1.26
600 0.31 0.08 0.17 1.57
700 0.3 0.07 0.16 1
800 0.33 0.08 0.16 1.24

E Artifact Appendix
E.1 Abstract
Artifacts include “raw” CSV data, “intermediary” CSV data, and
Python scripts to process them. The raw data are those which are
used from the beginning of an experiment. Intermediary data are
provided where full experimentation on the raw data would be too
slow for reproduction, these serve to accelerate the experimental

process. The tables in the paper can generally be reproduced (unfor-
matted) while the figures cannot be directly reproduced. Unplotted
figure data can generally be reproduced. Exact reproduction of ta-
bles and plotted graphs requires manual work which is described
in the artifacts.

E.2 Artifact check-list (meta-information)
• Program: Included, publicly available.
• Model: Necessary models trained from scratch or included.
• Data set: Included, approximately 10GB.
• Run-time environment: Conda 24.3 or newer, Python 3.10 or
newer.

• Hardware: CPU.
• Output: Console log, someCSVfiles. Described in artifact README.txt.
• Experiments: Refer to artifact README.txt.
• How much disk space required (approximately)?: 10GB.
• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes.

• How much time is needed to complete experiments (approxi-
mately)?: 1 day.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International.

• Data licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International.

• Archived?: https://zenodo.org/doi/10.5281/zenodo.13118004

E.3 Description
E.3.1 How to access. Download and unzip from Zenodo at https:
//zenodo.org/doi/10.5281/zenodo.13118004

Will require about 10GB of disk space unzipped.

E.3.2 Software dependencies. Conda 24.3 or newer, Python 3.10 or
newer.

E.3.3 Data sets. Included.

E.3.4 Models. Included or trained by artifact scripts.

E.4 Installation
Download and unzip the file hosted on Zenodo. Then use a terminal
to navigate to the unzipped project top-level directory. Perform the
commands:

conda env create -f paper87.yml
conda activate paper87

E.5 Evaluation and expected results
After following installation steps, all Python scripts in the “src”
directory which correspond with a table or figure (indicated in the
filename) should be executed. Figures will not be produced, but their
unplotted underlying data will be. The artifacts contain descrip-
tions of how to reproduce figures manually. Tables will generally
be reproduced (unformatted) by the scripts and the artifacts’ doc-
umentation (README.txt) notes where manual work is required
otherwise.

Results will be output to console logs and CSV files. Results
should match those reported in the paper to the extent of reduced
precision due to rounding errors.

https://zenodo.org/doi/10.5281/zenodo.13118004
https://zenodo.org/doi/10.5281/zenodo.13118004

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Machine Learning Model Calibration

	3 Constructing a confidence estimator
	3.1 Mixture of Experts Architecture
	3.2 Model Selection

	4 System-level Evaluations
	4.1 Setup
	4.2 Calibration Comparison
	4.3 Ablation Study

	5 FPGA Routing Risk Management Evaluations
	5.1 Setup
	5.2 Risk Management Characterization
	5.3 Future Improvement: Calibration Across Iterations

	6 Conclusion
	References
	A Machine Learning Metrics
	B Data Gathering
	C Detailed Model Selection
	D Hyperparameter Tuning
	E Artifact Appendix
	E.1 Abstract
	E.2 Artifact check-list (meta-information)
	E.3 Description
	E.4 Installation
	E.5 Evaluation and expected results

